

# Latent State Models of Training Dynamics

Michael Y. Hu<sup>1</sup> Angelica Chen<sup>1</sup> Naomi Saphra<sup>1</sup> Kyunghyun Cho<sup>1,2,3</sup> michael.hu@nyu.edu

<sup>1</sup>New York University <sup>2</sup>Prescient Design, Genentech <sup>3</sup>CIFAR Fellow

#### **Grokking: Sparse Parities** 1.5 ---- Train — Validation 0.9550.9780.9760.0220.0241.0 0.001 Loss 0.020.9740.5 0.019MAL Book I W 1.0 2 3 0.0 250 100 200 300 0 50 150 Epoch 1.25 ---- Train — Validation 0.9550.9781.00 P 0.0220.0010.0240.75 SOJ 0.50 0.974

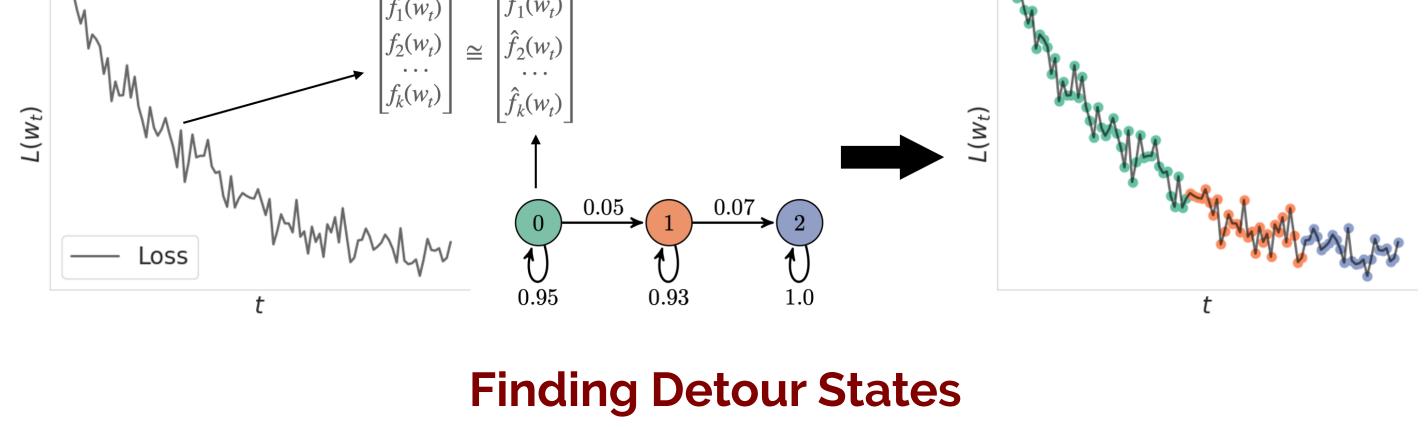
- Create a method to:
- 1. Understand random variation during model training.
- 2. Analyze phase transitions.

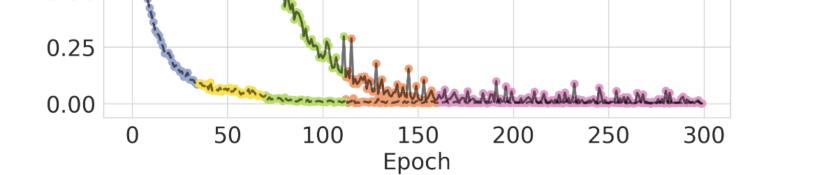
# Approach

**Motivation** 

- 1. Compute summary statistics for model checkpoints.
- 2. Train a hidden Markov model (HMM) to predict trajectories of statistics. The HMM infers a latent state for each checkpoint.
- 3. Use the learned HMM to analyze training dynamics.

| 1 | $\begin{bmatrix} c \\ c $ | <b>C</b> |
|---|-------------------------------------------------------------------|----------|







0.981

0.979

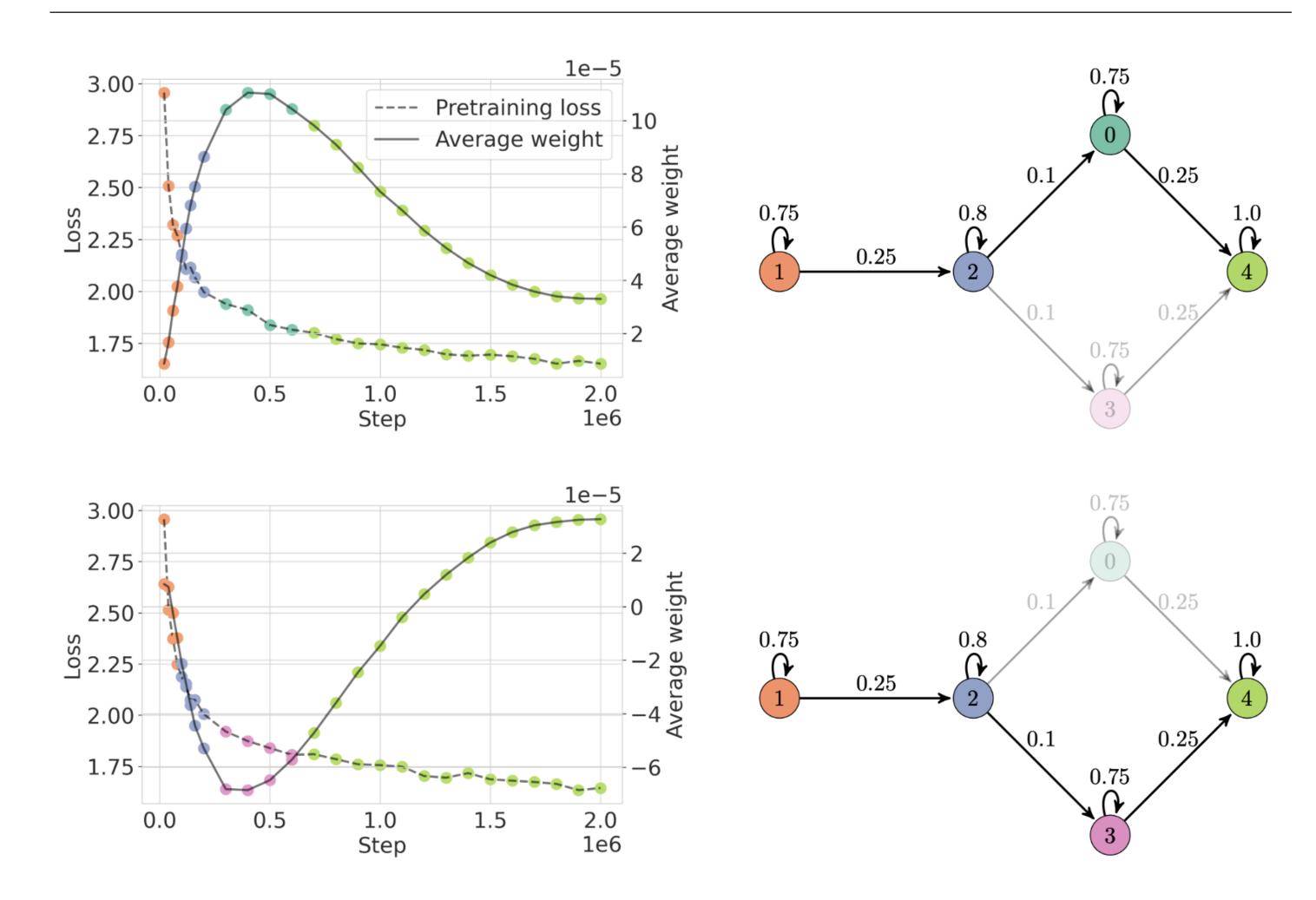
0.022

0.021

0.019

| Edge              | Top 3 important feature changes, by z-score                                 | # of runs using edge (40 total) |
|-------------------|-----------------------------------------------------------------------------|---------------------------------|
| $2 \rightarrow 0$ | $L_2 \uparrow 0.11, L_1 \downarrow 0.61, \frac{L_1}{L_2} \downarrow 0.32$   | 39                              |
| $2 \rightarrow 5$ | $L_2 \downarrow 0.19, L_1 \downarrow 1.01, \frac{L_1}{L_2} \downarrow 0.54$ | 1                               |

## Masked Language Modeling: MultiBERTs



We train linear regression to predict convergence epoch from the empirical distribution over latent states. Let  $X_1, ..., X_n$  be the sequence of latent states.

 $\blacktriangleright x: \hat{P}(X = i) = \frac{\text{number of times } X_j = i}{n}$ 

• y: The iteration in which evaluation accuracy crosses a threshold.

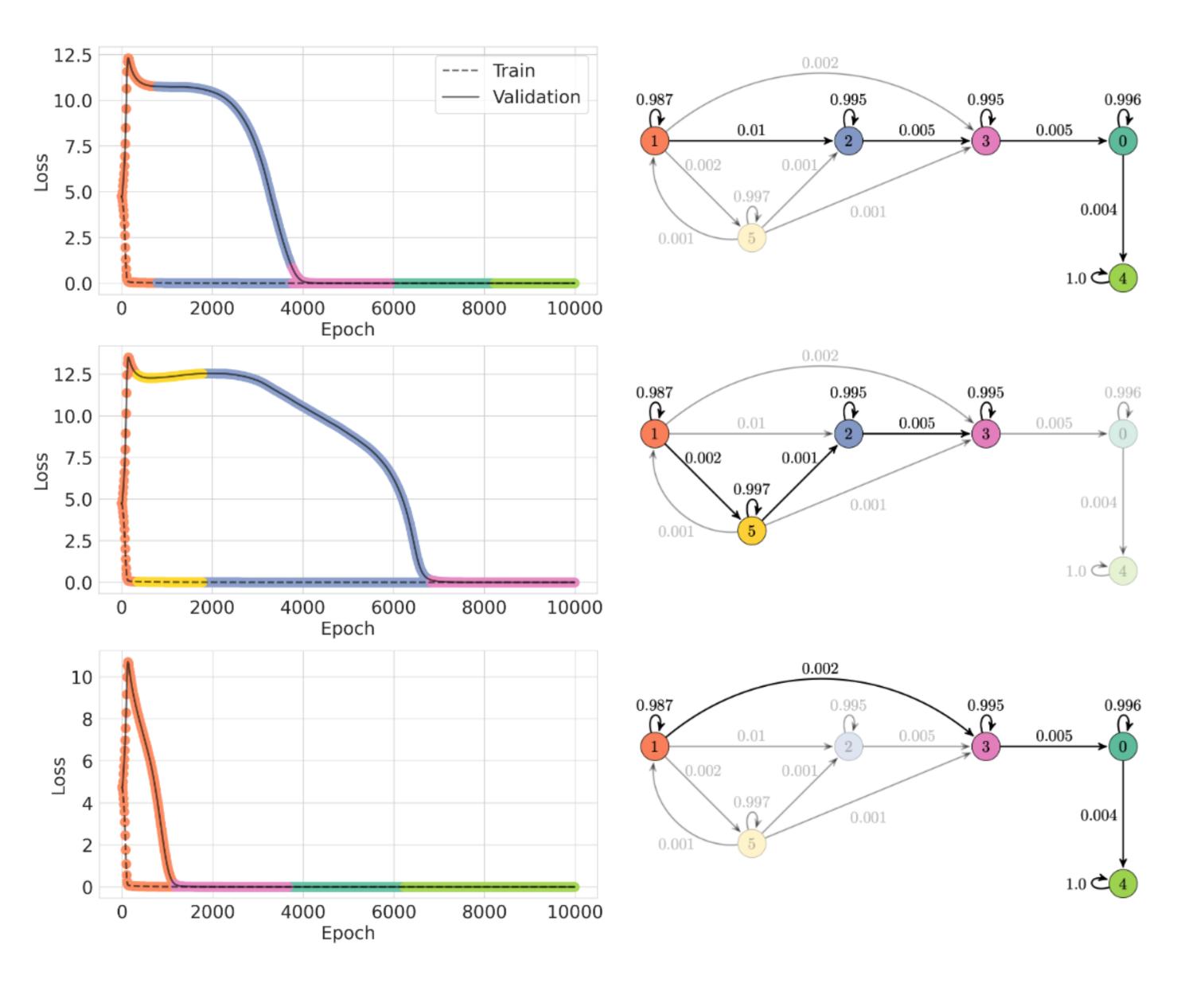
| Dataset          | $R^2$ | p-value |
|------------------|-------|---------|
| Modular addition | 0.977 | < 0.001 |
| Sparse parities  | 0.961 | < 0.001 |
| MNIST            | 0.154 | 0.315   |

A learned latent state is a **detour state** if:

- ► Some training runs do not visit the state.
- Its linear regression coefficient is positive when predicting convergence time.
  Detour states are bolded.

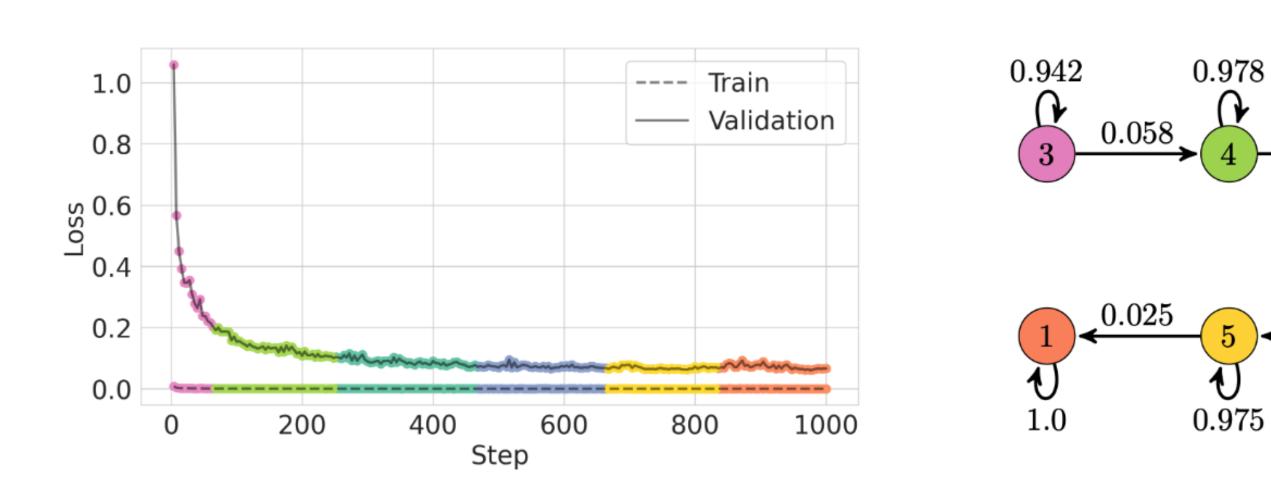
| Moc   | Modular addition |       | arse parities |      | MNIST         |
|-------|------------------|-------|---------------|------|---------------|
| State | Coefficient      | State | Coefficient   | Stat | e Coefficient |
| 0     | -0.15            | 0     | 0.77          | 0    | 0.17          |
| 1     | 0.98             | 1     | 0.41          | 1    | 0.52          |
| 2     | 1.19             | 2     | 0.98          | 2    | 0.54          |
| 3     | -0.20            | 3     | -0.23         | 3    | -0.06         |
| 4     | 0.18             | 4     | 0.58          | 4    | -0.33         |
| 5     | 0.95             | 5     | 1.13          | 5    | 0.46          |





| Edge              | Top 3 important feature changes, by z-score                                               | # of runs using edge (5 total) |
|-------------------|-------------------------------------------------------------------------------------------|--------------------------------|
| $2 \rightarrow 0$ | median $(w)$ $\uparrow$ 1.69, mean $(w)$ $\uparrow$ 1.70, max $(\lambda)$ $\uparrow$ 1.14 | 2                              |
| $2 \rightarrow 3$ | median $(w) \downarrow 1.33$ , mean $(w) \downarrow 1.30$ , max $(\lambda) \uparrow 1.11$ | 3                              |

### Image Classification: MNIST





| Edge              | Top 3 important feature changes, by z-score                                 | # of runs using edge (40 total) |
|-------------------|-----------------------------------------------------------------------------|---------------------------------|
| $1 \rightarrow 2$ | $L_2 \downarrow 0.59, L_1 \downarrow 0.88, \frac{L_1}{L_2} \downarrow 1.05$ | 34                              |
| $1 \rightarrow 5$ | $L_2 \downarrow 2.08, Var(w) \downarrow 2.24, L_1 \downarrow 2.25$          | 4                               |
| $1 \rightarrow 3$ | $L_2 \downarrow 1.68, Var(w) \downarrow 1.99, L_1 \downarrow 1.83$          | 2                               |

| $ 3 \rightarrow 4 $ | $L_2 \uparrow 0.62, Var(w) \uparrow 0.58, L_1 \uparrow 0.61$ |
|---------------------|--------------------------------------------------------------|
| $0 \rightarrow 2$   | $L_2 \uparrow 0.69, Var(w) \uparrow 0.70, L_1 \uparrow 0.70$ |
| $5 \rightarrow 1$   | $L_2 \uparrow 0.46, Var(w) \uparrow 0.50, L_1 \uparrow 0.48$ |

#### Contributions

- 1. The HMM is a principled, automated, and widely applicable method for analyzing variability in model training and phase transitions.
- 2. Certain latent states are predictive of a training run converging more slowly.
- 3. Generalization in grokking can be anticipated via changes in the model occurring earlier in training.